MicroRNAs Regulate Bone Development and Regeneration

نویسندگان

  • Sijie Fang
  • Yuan Deng
  • Ping Gu
  • Xianqun Fan
چکیده

MicroRNAs (miRNAs) are endogenous small noncoding ~22-nt RNAs, which have been reported to play a crucial role in maintaining bone development and metabolism. Osteogenesis originates from mesenchymal stem cells (MSCs) differentiating into mature osteoblasts and each period of bone formation is inseparable from the delicate regulation of various miRNAs. Of note, apprehending the sophisticated circuit between miRNAs and osteogenic homeostasis is of great value for artificial skeletal regeneration for severe bone defects. In this review, we highlight how different miRNAs interact with diverse osteo-related genes and endeavor to sketch the contours of potential manipulations of miRNA-modulated bone repair.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MicroRNAs and Bone Regeneration

Bone has multiple functions, both morphologically and physiologically, and it frequently features in the pathological condition, including fracture and osteoporosis. For bone regeneration therapy, the regulation of osteoblast differentiation is important. MicroRNA (miRNA)s are short noncoding RNA which regulate gene expression at the post-transcriptional level. MiRNAs play an important role not...

متن کامل

Regulation of microRNAs and their role in liver development, regeneration and disease.

Since their discovery more than a decade ago microRNAs have been demonstrated to have profound effects on almost every aspect of biology. Numerous studies in recent years have shown that microRNAs have important roles in development and in the etiology and progression of disease. This review is focused on microRNAs and the roles they play in liver development, regeneration and liver disease; pa...

متن کامل

MicroRNA-138 and SIRT1 form a mutual negative feedback loop to regulate mammalian axon regeneration.

Regulated gene expression determines the intrinsic ability of neurons to extend axons, and loss of such ability is the major reason for the failed axon regeneration in the mature mammalian CNS. MicroRNAs and histone modifications are key epigenetic regulators of gene expression, but their roles in mammalian axon regeneration are not well explored. Here we report microRNA-138 (miR-138) as a nove...

متن کامل

MicroRNA-144-3p inhibits bone formation in distraction osteogenesis through targeting Connexin 43

Distraction osteogenesis (DO), one of effective therapies for bone regeneration, has been received more attention in recent years. However, the underlying mechanism remains elusive. Recently, microRNAs (miRNAs) have been reported to play important roles in regulating osteogenesis and bone formation. We therefore provided the hypothesis that miRNAs could involve in the DO-mediated bone regenerat...

متن کامل

MicroRNAs 106b and 222 Improve Hyperglycemia in a Mouse Model of Insulin-Deficient Diabetes via Pancreatic β-Cell Proliferation

Major symptoms of diabetes mellitus manifest, once pancreatic β-cell numbers have become inadequate. Although natural regeneration of β-cells after injury is very limited, bone marrow (BM) transplantation (BMT) promotes their regeneration through undetermined mechanism(s) involving inter-cellular (BM cell-to-β-cell) crosstalk. We found that two microRNAs (miRNAs) contribute to BMT-induced β-cel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2015